The effect of temperature on the failure modes of polymer foam cored sandwich structures
نویسندگان
چکیده
The influence of elevated temperature on the stability of sandwich structures is investigated. A new analytical solution is proposed that enables the calculation of the critical wrinkling stress in sandwich beams subjected to load and elevated temperatures. The effect of a through thickness temperature gradient is accounted for by imposing different stiffnesses of the core for the different temperatures. The sandwich beam studied in the paper is loaded in a simply supported four-point bending configuration, where one of the face sheets is heated. The experimental approach utilises high-speed imaging where the strains are calculated from measured displacements obtained from digital image correlation (DIC). A shift of the failure mode from face sheet yielding to face sheet wrinkling is observed with increasing temperatures. The results from the new analytical method agree well with corresponding experimental results. Finite element analysis is also conducted, which shows excellent correspondence with the theory and the experimental data. The work clearly demonstrates that under certain conditions the load response of the sandwich beam can become nonlinear and unstable, and hence will fail well below face sheet yielding load because of the loss of stiffness of the core material.
منابع مشابه
A Theoretical and Experimental Study of Failure Maps of Sandwich Beams with Composite Skins and Honeycomb Core
Failure maps of sandwich panels such as beam, plate and shell are of great importance in designing such structures. In this paper, failure maps of sandwich beams with composite skin and honeycomb core are obtained. The effect of transverse shear in skins and core and the effect of double walls of honeycomb core have been taken into account. Shear deformation of skins and core are assumed to be ...
متن کاملImproving the Performance of the Sandwich Panel with the Corrugated Core Filled with Metal Foam: Mathematical and Numerical Methods
A new type of composite structure with a metal foam is reinforced by the metal corrugated core, called metal-foam-filled sandwich panel with a corrugated or V-frame core, is modelled, simulated, and studied in this article. All types of samples with different relative densities of the foam are tested and analyzed under the drop hammer load. The sandwich panel included two aluminium face-sheet, ...
متن کاملEffects of Nanoclay on Cellular Morphology and Water Absorption Capacity of Poly(vinyl alcohol) Foam
The present work was aimed to examine the effects of incorporation of each of two different types of nanoclay, i.e. Cloisite Na+ and Cloisite 30B, into PVA foam on cellular morphology and water absorption capacity. Foam samples containing 0.0-10.0 wt% of each of the two types of nanoclay alone were prepared using mechanical foaming. Accordingly, PVA/organoclay/water suspensions were prepare...
متن کاملEffect of Cyclic Compression Loading On Crushing Response of Polymer Based Composites Sandwich Panels
The objective of work was focused to investigate microstructure of polyurethane foam and cyclic crushing strength of its sandwich structure which made of sisal / coir / bamboo / glass fabrics as reinforcement with polyester resin to form composites skin. The tested sandwich panels were constructed four type of FRP faceplates made of sisal / coir / bamboo / glass fiber reinforcements impregnated...
متن کاملMoisture absorption and mechanical degradation studies of PMI foam cored fiber/epoxy resin sandwich composites
The present paper explores the result of hygrothermic aging of polymethacrylimide (PMI) foam core sandwich composites immersed in different temperature deionized (DI) and sea waters. The prepared specimens were tested for moisture up-take behavior and the resulting property degradation in terms of flexural and flat wise compressive strength. The results indicate that the saturated hygroscopic t...
متن کامل